Speed-up of combustion fronts in shear flows

نویسنده

  • François Hamel
چکیده

This paper is concerned with the analysis of speed up of reaction-diffusion-advection traveling fronts in infinite cylinders with periodic boundary conditions. The advection is a shear flow with a large amplitude and the reaction is nonnegative, with either positive or zero ignition temperature. The unique or minimal speeds of the traveling fronts are proved to be asymptotically linear in the flow amplitude as the latter goes to infinity, solving an open problem from [4]. The asymptotic growth rate is characterized explicitly as the unique or minimal speed of traveling fronts for a limiting degenerate problem, and the convergence of the regular traveling fronts to the degenerate ones is proved for positive ignition temperatures under an additional Hörmander-type condition on the flow.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Min-max Variational Principle and Front Speeds in Random Shear Flows∗

Speed ensemble of bistable (combustion) fronts in mean zero stationary Gaussian shear flows inside two and three dimensional channels is studied with a min-max variational principle. In the small root mean square regime of shear flows, a new class of multi-scale test functions are found to yield speed asymptotics. The quadratic speed enhancement law holds with probability arbitrarily close to o...

متن کامل

Reaction-diffusion Front Speed Enhancement by Flows

Abstract. We study flow-induced enhancement of the speed of pulsating traveling fronts for reaction-diffusion equations, and quenching of reaction by fluid flows. We prove, for periodic flows in two dimensions and any combustion-type reaction, that the front speed is proportional to the square root of the (homogenized) effective diffusivity of the flow. We show that this result does not hold in...

متن کامل

Pulsating Front Speed-up and Quenching of Reaction by Fast Advection

We consider reaction-diffusion equations with combustion-type non-linearities in two dimensions and study speed-up of their pulsating fronts by general periodic incompressible flows with a cellular structure. We show that the occurence of front speed-up in the sense limA→∞ c∗(A) = ∞, with A the amplitude of the flow and c∗(A) the (minimal) front speed, only depends on the geometry of the flow a...

متن کامل

Thin front propagation in random shear flows.

Front propagation in time-dependent laminar flows is investigated in the limit of very fast reaction and very thin fronts--i.e., the so-called geometrical optics limit. In particular, we consider fronts stirred by random shear flows, whose time evolution is modeled in terms of Ornstein-Uhlembeck processes. We show that the ratio between the time correlation of the flow and an intrinsic time sca...

متن کامل

Existence of Kpp Type Fronts in Space-time Periodic Shear Flows and a Study of Minimal Speeds Based on Variational Principle

We prove the existence of reaction-diffusion traveling fronts in mean zero space-time periodic shear flows for nonnegative reactions including the classical KPP (Kolmogorov-Petrovsky-Piskunov) nonlinearity. For the KPP nonlinearity, the minimal front speed is characterized by a variational principle involving the principal eigenvalue of a space-time periodic parabolic operator. Analysis of the ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011